AEDC-TR-65-85

A SIMULATED ALTITUDE TEST OF A SATURN SIC RETRO DEVELOPMENT MOTOR (TEST UNIT NO. SD-20)

J. S. Culp and B. M. Bishop ARO, Inc.

May 1965

ROCKET TEST FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE HTTP://HEROICRELICS.ORG

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

Defense Documentation Center release to the Clearinghouse for Federal Scientific and Technical Information (CFSTI) and foreign announcement and distribution of this report are not authorized. The distribution of this report is limited because significant details of U.S. altitude testing capabilities are revealed.

A SIMULATED ALTITUDE TEST OF A SATURN SIC RETRO DEVELOPMENT MOTOR (TEST UNIT NO. SD-20)

J. S. Culp and B. M. Bishop ARO, Inc.

FOREWORD

The work reported herein was sponsored by the National Aeronautics and Space Administration (NASA) and The Boeing Company (TBC) for the Thiokol Chemical Corporation (TCC) under Program Area 921E, Project 9115.

The results of the test presented were obtained by ARO, Inc. (a subsidiary of Sverdrup and Parcel, Inc.), contract operator of the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee, under Contract AF 40(600)-1000. The test was conducted on February 24, 1965, under ARO Project No. RP1435, and the report was submitted by the authors on April 1, 1965.

This technical report has been reviewed and is approved.

Ralph W. Everett Major, USAF AF Representative, RTF DCS/Test Jean A. Jack Colonel, USAF DCS/Test

ABSTRACT

Saturn SIC retro motor TE-M-424, Test Unit Number SD-20, was fired in Propulsion Engine Test Cell (J-5) as part of the user's, Thiokol Chemical Corporation, research and development program for this motor. The primary test objectives were to determine ignition characteristics, ballistic performance, and hardware integrity at altitude conditions. The motor was ignited, as planned, by the two ignition systems at a simulated altitude of 113,000 ft and burned at an average altitude of 113,000 ft for a total of 1.5 sec. The effective burn time was 0.626 sec, and the motor produced an effective vacuum impulse of 59,530 lbf-sec, which is above the specification minimum of 57,300 lbf-sec. The ignition time of 92 msec is within the specification requirements. Post-fire motor inspection revealed that the hardware integrity was satisfactory. heroicrelics: Page iv is blank

CONTENTS

	1	age
	ABSTRACT	iii
1.	INTRODUCTION	1
п.	APPARATUS	
	2.1 Test Article	1
	2.2 Test Cell and Installation	2
	2.3 Instrumentation	4
	2.4 Calibration	4
m.	PROCEDURE	5
IV.	RESULTS AND DISCUSSION	
	4.1 General	6
	4.2 Motor Ignition	6
	4.3 Ballistic Performance	6
	4.4 Motor Thermal Data	7
1599471	4.5 Motor Structural Integrity	8
v.	SUMMARY OF RESULTS	9
	REFERENCES	9

ILLUSTRATIONS

Figure

1.	Saturn SIC Mockup
	a. Retro Location
	b. Retros under Fairing
2.	Saturn SIC Retro Motor
	a. Overall View
	b. Sectioned View
	c. Throat and Pyrogen Detail 15
3.	Exploding Bridgewire Ignition System
4.	Propulsion Engine Test Cell (J-5)
	a. Spray Chamber and Elevated Tank
	b. Overall Testing Complex
	c. Artist's Cutaway View
	d. Schematic of Thrust Measuring System 20
	e. Plan View
	f. Interior View
5.	Saturn SIC Retro in X-Ray Inspection
6.	Motor Installation

AEDC-TR-65-85

Figure		Page
7.	Motor Ignition Detail	25
8.	Measured Motor Ballistic Performance	26
9.	Comparison of SD-19, SD-20, and Predicted Motor Vacuum Performance a. Axial Force	27 28
10.	Chamber Temperatures a. Thermocouple Location	29 30
11.	Post-Fire Motor Condition a. Overall View	31 32 33

TABLES

I.	Composition of TP-E-8104 Propellant	•	•	•	•					•		34
II.	Countdown Sequencer Program	•	•	•	÷	•	•	•	•	•	•	35
III.	Summary of Motor Instrumentation $% \mathcal{L}_{\mathcal{L}}$.	•			•		•	•	•	•		36
IV.	Summary of Motor Performance Data		•	•	•	•	•	•	•			38

SECTION I

The Saturn V launch vehicle consists of three stages, SIC, S-II, and S-IVB, and the instrument unit. The first of the Saturn V stages, the SIC, has two TE-M-424 solid-propellant retro motors located in each of the four fairings, which are at the base of the stage (Fig. 1).

The nominal 800,000-lb thrust produced by these retro rockets provides for a more rapid separation of the SIC and S-II stages, thus reducing the time in which there is no vector control of the vehicle. Ignition of these motors is programmed to occur during main engine tailoff. After ignition, the motors are to burn through the fairing and decelerate the stage.

The TE-M-424 Saturn SIC retro motor is built by Thiokol Chemical Corporation (TCC), Elkton Division. Test unit number SD-20 (Serial Number 5007) was test fired in Propulsion Engine Test Cell (J-5) at the Rocket Test Facility (RTF). This was the second and last firing of a TE-M-424 in an altitude facility as part of the research and development program for this motor. The results of the first firing are discussed in Ref. 1.

Objectives of the altitude test were to determine ignition characteristics when two ignition systems are used, ballistic performance, and hardware integrity at altitude conditions.

SECTION II

2.1 TEST ARTICLE

Each retro motor has an approximate gross weight of 520 lb and is designed to produce 100,000 lbf for 0.6 sec of its 1.5-sec burn time. The overall weight is less than the 537 lb specified in Ref. 2, and the motor fits within the physical envelope specified.

The motor chamber, 15.2 in. in diameter and 79.7 in. long, is constructed of 1/8-in.-thick Ladish DC-6 steel with a liquid polymer liner (TL-L-300) (Figs. 2a and b). A single fixed 15-deg, half-angle nozzle having a nominal throat diameter of 6.70 in. is submerged 12.9 in. into the chamber. The submerged portion of the nozzle is constructed of Ladish DC-6 steel, having a graphite throat insert backed by a cork and rubber composition gasket (Armstrong Type DK-149) and a cadmium plated steel retaining ring which is pinned to the nozzle body (Fig. 2c). The outside diameter of the throat portion of the submerged nozzle is insulated with a paper phenolic insulation material, whereas the remainder is insulated with TL-L-300. A tapered steel exit cone (AISI 4130 heat treated per MIL-H-6878) extends the nozzle from an area ratio of 3.7 to 8.7. A styrofoam nozzle closure is cemented into the nozzle at an area ratio of 1.6.

The chamber was loaded with approximately 278 lb of composite, case-bonded, polysulfide propellant (TP-E-8104) cast directly into the chamber in an internal burning twelve-point, double-web star grain configuration. Propellant composition is presented in Table I.

Propellant ignition is effected by a pyrogen-type igniter, which is ignited by two exploding bridgewire (EBW) initiators firing into a cavity containing Boron 2A pellets (Fig. 2c). The system is armed by providing 28 v to the EBW firing units that consist of a series of capacitors which accumulate a sufficient charge so that, upon applying the firing current to the system, a thyratron is triggered, supplying approximately 2300 v to the EBW initiators (Aerojet AGX-2008 Rev. K) (Fig. 3). This ignites 18 g of Boron 2A pellets which ignite the pyrogen grain. The pyrogen exhaust passes through five 3/8-in.-diam holes and impinges on the motor grain at a 45-deg angle. The 1.75-lb pyrogen grain, cast in a double-web star grain configuration, is the same composition as the motor grain.

To determine the condition of the EBW firing units after arming and before firing, an EBW Firing Unit Monitor (Fig. 3) was constructed. This monitor verifies that the system is armed prior to firing, indicates that the system has discharged, and relays the time of discharge to the end recording system.

2.2 TEST CELL AND INSTALLATION

The Propulsion Engine Test Cell (J-5) (Fig. 4) is a horizontal test cell designed for testing solid-propellant rocket engines with a thrust up to 100,000 lb_f (with a growth potential to 200,000 lb_f thrust) at altitudes in excess of 100,000 ft. The cell is a cylindrical section 16 ft in diameter and 50 ft long and is fabricated from a 1/2-in. hot rolled steel plate reinforced at 6-ft intervals with ring girders. It is insulated with 2 in. of cellular glass, coated with 1/8-in. vapor seal mastic, and protected by a 0.020-in. aluminum jacket.

The single component thrust stand used in this test is capable of measuring axial forces in excess of 100,000 lb_f. Axial thrust is reacted by two 33-in. I-Beams, which are anchored in the cell foundation containing approximately 600,000 lb_m of reinforced concrete. The stand is stabilized in the yaw plane by a forward and aft column extending through bellows seals in the wall of the test cell to a "seismic mass" consisting of approximately 600,000 lb_m of reinforced concrete. Calibration of the axial load cell is accomplished, in place, by a binary deadweight calibrator having a range from 0 to 127,000 lb_f. With the loaded Saturn motor and support hardware installed, the thrust stand had a natural frequency of approximately 55 cps in the axial direction.

Two tandem steam ejectors (Fig. 4c) are placed in each of four auxiliary ducts which are located circumferentially around the test cell at 90-deg intervals. The auxiliary pumping system is used for improvement of the test cell altitude or for removal of exhaust gases from thrust termination or other auxiliary control systems. Three of the ejectorduct systems were used during the Saturn tests.

The test cell is equipped with a temperature conditioning system designed to maintain the test cell and motor at the prescribed temperature from motor installation until just prior to pre-fire pumpdown.

The rocket exhaust discharged into a 53-in.-diam, water-cooled diffuser having a two-step entrance cone (Fig. 4d), which is inserted in a 102-in.-diam, water-cooled diffuser. A center-body steam ejector installed in the 102-in.-diam diffuser is used to facilitate pre-fire pumpdown, to maintain altitude, and to reduce recirculation of gases into the test cell at motor tailoff. The steam ejector has an 8.5-in.-diam throat and an area ratio of 10. It may be controlled automatically or manually over a driving-pressure range from 0 to 500 psig.

The exhaust-steam mixture then flows through a spray chamber 16 ft in diameter and 50 ft long which contains nine spray banks, each of which is capable of delivering approximately 9000 gpm at a maximum pressure of 47 psia. Water is supplied to the spray chamber from an elevated water tank with a usable capacity of approximately 250,000 gal. From the spray chamber, the exhaust gases flow through approximately 2000 ft of 13-ft-diam duct to the RTF exhauster machines and are pumped to atmosphere as shown schematically in Fig. 4e.

To provide additional light for the high-speed (2000 fps) optical data systems, the test cell was painted white, and a light hood was fabricated (Fig. 4f). The hood consists of 48 reflectors, each having two long duration (1.75 sec) flash bulbs. In order to provide the light required for three seconds, the reflectors were divided into three groups arranged to provide equal light intensity over the motor area. Ignition times are given as part of Table II.

2.3 INSTRUMENTATION

Axial thrust was measured using a nominal 100,000-lbf, fourfoldoutput, bonded strain-gage-type load cell. Universal flexures were used to isolate the load cell from any force not directed through the load cell axis. Strain-gage-type transducers were used to measure pyrogen, chamber, steam, water, exhaust system, and auxiliary pumping system pressures. Motor case and nozzle temperatures were sensed with ironconstantan thermocouples bonded to the motor chamber and nozzle. Steam, water, exhaust system, and auxiliary pumping system temperatures were measured with iron-constantan thermocouples.

The output signal of each measuring device was recorded on redundant end recorders. The types of data acquisition and recording systems used during this test were a multiple-input digital data acquisition system scanning each parameter at a rate of 45 or 225 samples per second and recording on magnetic tape, single input analog continuous magnetic tape, FM systems recording on magnetic tape, photographically recording galvanometer-type oscillographs recording at paper speeds of 16 in./sec or 80 in./sec, and direct-inking null-balance potentiometertype strip charts. Visual observation of the firing was provided by a closed-circuit television monitor. High-speed (2000 fps) optical data were obtained to provide a permanent visual record of the firing. Table III presents instrument ranges, recording methods, and system accuracies for all measured parameters.

2.4 CALIBRATION

The axial thrust instrumentation systems were calibrated at altitude conditions before and after the motor firing by using a remotely controlled, hydraulically activated deadweight binary calibrator. The axial thrust calibrator weights are secondary standard weights certified by the National Bureau of Standards (NBS) to be in error by less than 0.01 percent. By using a standard load cell system, accurate to 0.05 percent, the entire axial thrust calibrator was in-place calibrated from the 4000 to the 100,000 lbf level.

All transducers used in this test were laboratory calibrated before installation. The strain-gage-type pressure transducers were in-place

calibrated with an electrical calibration system. A voltage substitutiontype of in-place calibration was used on the thermocouples. They had a 150°F reference junction, and the NBS (Ref. 3) iron-constantan tables were used to reduce the data to engineering units. All in-place calibrations were performed at altitude before and after the firing.

SECTION III PROCEDURE

The motor arrived at AEDC January 29, 1965, and was transported to the AEDC Radiographic Inspection Laboratory and subjected to an inspection with the Betatron X-ray machine (Fig. 5). On February 17, 1965, it was transported to the Rocket Preparation Area where the pressure transducers and chamber thermocouples were installed. A pressure check was performed following TCC Procedure OCL-T-2198, Revision 2.

Prior to firing the first motor, an impulse test and linearity check were performed on the thrust stand with the mass simulated motor installed to determine basic thrust stand characteristics. In addition, an EBW initiator was fired by each ignition system, verifying the system's performance.

On February 19, 1965, the motor was transported to the test cell, installed in the thrust stand (Fig. 6), aligned, and prepared for firing. This included connecting, checking, and insulating the instrumentation cables with asbestos cloth, aluminum foil, glass tape, and RTV-88 silicone rubber as well as positioning the diffuser entrance cone and checking the ignition and camera systems.

The temperature conditioning system was started on February 19, and the test cell temperature was maintained between 62 and 75°F until 12 hr prior to air-on. During the 12-hr period, the motor case temperature was maintained between 66 and 69°F. This is within the limits of 70 ± 5 °F specified by TCC.

On February 24, sea-level calibrations were performed followed by a sequence run, which verified that all transducers and end recording systems were operating properly and were acceptable for firing. Final test cell pre-fire operational procedures were completed; the test cell was sealed and evacuated by the RTF exhaust machinery to 0.34 psia (approximately 84,000 ft) (Ref. 4). Altitude calibrations were then performed. Approximately 65 sec prior to ignition, the automatic sequencer was started, activating the steam, water, light, camera, instrumentation, and ignition systems at the times shown in Table II. Starting at T + 10 sec, the sequencer began the post-fire shutdown.

After post-fire altitude calibrations were performed, the cell was returned to sea-level pressure. The motor was removed from the test cell February 25, 1965, and returned to the Rocket Preparation Area for post-fire inspection. On March 2, 1965, the spent motor was returned to TCC by truck.

SECTION IV RESULTS AND DISCUSSION

4.1 GENERAL

The results reported herein are those obtained from the firing of the Saturn SIC Retro Motor SD-20 in Propulsion Engine Test Cell (J-5) on February 24, 1965. In addition to ballistic performance, the objectives of this test were to verify hardware integrity and ignition characteristics at altitude conditions. The results, with the corresponding data from the test of motor SD-19, are summarized in Table IV.

4.2 MOTOR IGNITION

Propellant combustion was initiated by one of the two exploding bridgewire ignition systems at an altitude of 113,000 ft (Ref. 4). The second EBW initiator apparently fired 9 msec later. The nozzle closure, which sealed the chamber and igniter at atmospheric pressure, was ejected without damage to the nozzle or nozzle extension.

Ignition delay, defined as the time from receipt of ignition current by the EBW Firing Unit until chamber pressure reaches 100 psia, was 58 msec. The ignition rise time, which is the time required for chamber pressure to change from 100 psia to 75 percent of its maximum value, was 34 msec. Ignition time, the sum of ignition delay and ignition rise time, was 92 msec. This was less than the 130 msec required by Ref. 2. An analog trace of thrust, chamber pressure, and pyrogen pressure for the first 160 msec is presented in Fig. 7.

4.3 BALLISTIC PERFORMANCE

A measured thrust-time curve is presented in Fig. 8 along with chamber pressure and cell pressure. Motor-diffuser pumping was maintained throughout motor tailoff. The average altitude during the firing was 113,000 ft.

Motor operation time, defined as beginning at the first perceptible indication of thrust and ending when the thrust falls to zero, was approximately 1.5 sec. The effective burn time, defined as the elapsed time from the point where chamber pressure rises to 75 percent of its maximum value and ends when it returns to this value, was 0.626 sec.

The average effective measured impulse based on motor effective burn time as determined by five high accuracy magnetic tape systems was 59,510 lbf-sec. One standard deviation was 0.105 percent. Effective impulse, corrected to vacuum conditions by adding the product of the cell pressure integral and pre-fire nozzle exit area, was 59,530 lbf-sec. This is greater than the required 57,300 lbf-sec stated in Ref. 2. This correction amounted to 0.033 percent of measured effective impulse. The average effective vacuum thrust was 95,100 lbf, which is within the required limits of 81,500 and 100,140 lb specified in Ref. 2 for a 70°F motor.

Measured motor operation, or total impulse, was 66,000 lbf-sec. The vacuum corrected total impulse including the correction to vacuum conditions was 66,050 lbf-sec for a specific impulse of 234.6 sec based on the user's stated propellant weight.

The maximum chamber pressure was 1700 psia. Average chamber pressure based on motor effective burn time was 1679 psia. Figure 9 provides a comparison between the results predicted in Ref. 5, the results of the first test (SD-19), and those obtained in this test. The predicted data started at 100-psia chamber pressure. This time was correlated with the ignition delay experienced on both firings and the composite plot made. The SD-20 effective burn time was longer (0.626 versus 0.610 sec) and at a lower chamber pressure (1700 versus 1760 psia max) than SD-19. Both motors had substantially the same throat area.

4.4 MOTOR THERMAL DATA

Fourteen iron-constantan thermocouples were installed on the motor as shown in Fig. 10a. Figure 10b presents a series of plots of chamber, nozzle, and cell temperatures versus time from T - 0 to T + 320 sec. It is noted that the disagreement between two corresponding thermocouples located at different web sections 30 deg apart is less than 25°F. Although cell temperature remained relatively constant during the peak period, all of the chamber temperatures continued to rise, indicating that they were insulated sufficiently to prevent the cell temperature from affecting the data significantly. The data indicate that there was no significant case temperature rise during the firing even though postfire temperatures reached 280° F at T + 320 sec when data acquisition ended.

The nozzle exit cone thermocouples were bonded to the nozzle with epoxy cement in accordance with the user's request. Optical data systems indicated that thermocouples T-12 and T-14 came completely unbonded at T + 1.5 sec. Data analysis indicated that during post-fire heat soak these parameters approximated cell temperature.

Thermocouples T-11 and T-13 exhibited 6 and 16°F temperature rise, respectively, during the 1.5-sec motor burn time. It is believed that these data are invalid because the optical data recorders indicated that the nozzle paint blistered during this same time period. The postfire heat soak resulted in maximum indicated exit cone temperatures of 190°F (Fig. 10b).

4.5 MOTOR STRUCTURAL INTEGRITY

Post-fire inspection (Fig. 11) revealed that all components of the motor were in satisfactory condition. The paint on the nozzle exit cone started to burn at approximately 0.7 sec, and a portion of it was blown off at the end of motor operation (T + 1.5 sec). There was a considerable amount of bluing on the exit cone with the hot spots corresponding to the valleys in the propellant grain configuration.

The nozzle throat remained in place and showed no sign of major erosion. Twelve propellant slivers, approximately 5/8 in. wide and 3/8 in. high, remained in the chamber. TCC estimated the remaining propellant at 3 to 4 lb. With the exception of the propellant slivers and the heating of the exit cone, the condition of the visible part of the motor was excellent.

SECTION V SUMMARY OF RESULTS

The results of the firing of Saturn SIC Retro development motor SD-20 at a simulated altitude of 113,000 ft in Propulsion Engine Test Cell (J-5) are summarized as follows:

- 1. Structural integrity of the chamber, nozzle, nozzle extension, igniter, and throat was satisfactory.
- 2. With the pyrogen and chamber sealed at atmospheric pressure, the motor was successfully ignited by one ignition system as planned. The ignition time was 92 msec.
- 3. The motor produced an effective vacuum impulse of 59, 530 lbf-sec which is greater than the 57, 300 lbf-sec specified in Ref. 2.
- 4. Average effective vacuum thrust of 95,100 lbf is within the specification limits of 81,500 to 100,140 lbf for a 70°F motor.
- 5. Twelve slivers 5/8 in. wide and 3/8 in. high remained in the chamber after firing. TCC estimates that they contain 3 to 4 lb of propellant.

REFERENCES

- Culp, J. S. "A Simulated Altitude Test of a Saturn SIC Retro Development Motor (Test Unit No. SD-19)." AEDC-TR-65-76, April 1965.
- Retro Rocket Motor Design Procurement Drawing 60B47001 Originated by George C. Marshall Space Flight Center, NASA, Huntsville, Alabama, 5-17-63. Last Revision February 14, 1964.
- 3. National Bureau of Standards Circular 561, 1955.
- 4. Minzner, R. A., Champion, K. S. W., and Pond, H. L. "The ARDC Model Atmosphere." AFCRC-TR-59-267, August 1959.
- Black, R. E., Jr. "Internal Ballistics Report TE-424 Rocket Motor." Thiokol Chemical Corporation RE-350, January 30, 1964.

heroicrelics: Page 10 is blank

a. Retro Location Fig. 1 Saturn SIC Mockup

Retros under Fairing
 Fig. 1 Concluded

a. Overall View Fig. 2 Saturn SIC Retro Motor

b. Sectioned View

Fig. 2 Continued

TL-L-300 Insulation

Paper Phenolic Insulation-

c. Throat and Pyrogen Detail

Fig. 2 Concluded

Fig. 3 Exploding Bridgewire Ignition System

- a. Spray Chamber and Elevated Tank
- Fig. 4 Propulsion Engine Test Cell (J-5)

b. Overall Testing Complex

Fig. 4 Continued

c. Artist's Cutaway View

d. Schematic of Thrust Measuring System

Fig. 4 Continued

AEDC-TR-65-85

Fig. 4 Continued

f. Interior View Fig. 4 Concluded

Fig. 5 Saturn SIC Retro in X-Ray Inspection

Fig. 6 Motor Installation

Fig. 8 Measured Motor Ballistic Performance

b. Chamber Pressure Fig. 9 Continued

a. Thermocouple Location

Fig. 10 Chamber Temperatures

Fig. 10 Concluded

a. Overall View Fig. 11 Post-Fire Motor Condition

Photograph supplied by Thiokol Chemical Corporation AFT. CLOSURE UNIT NO AEDE SD 20 INT DAYL 3.9.65 10 NO 1183078 INTOTORIANION THROAT -Retaining Ring Post TEST -Gasket Nozzle Throat Nozzle

> b. Close-Up of Nozzle Throat Fig. 11 Continued

TABLE I COMPOSITION OF TP-E-8104 PROPELLANT

		Percent by
Material	Purpose	Weight
Ammonium Perchlorate	Oxidizer	72.0
Ethyl Formal, Sulfide, Type LP-33	Fuel and Binder	18.8
Dibutyl Carbitol Formal	Plasticizer	2.1
Sulfur Diphenylquanidine p-quinonedioxime	Curing Agents	2.1
Aluminum Powder	Fuel	2.0
Ferric Oxide	Burning Rate Accelerator	2.0
Magnesium Oxide	Stabilizer	1.0

TABLE II COUNTDOWN SEQUENCER PROGRAM

- T 65 Start steam system
- T 50 Start water systems
- T 40 Start digital data acquisition system
- T 38 Arm EBW ignition systems
- T 10 Start strip charts, oscillographs B and C, and magnetic tape recorders
- T 5 Start oscillographs A and D
- T 2 Start cameras
- T 1 Fire first series of photo flood bulbs
- T 0 Motor ignition
 - Fire second series of photo flood bulbs
- T + 1 Fire third series of photo flood bulbs
- T + 10 Stop oscillographs A and D
- T + 15 Initiate shutdown of water and steam systems
- T + 30 Stop strip charts and magnetic tape recorders
- T + 40 Stop cameras
- T + 320 Stop oscillographs B and C and digital data acquisition system

Time in seconds

Parameter Symbol	Parameter	Range	Strip Chart	Oscillo- graph ¹	High Accuracy Analog System	FM	Digital Data System, Samples per Second
FY-1	Axial Force	0 to 150K lbf	x	A, B			225
FY-2	Axial Force	0 to 150K lbf		C, D	x		
FY-3	Axial Force	0 to 150K lbf		A, B	x		225
FY-4	Axial Force	0 to 150K lbf		C, D		x	
FY-5	Axial Force	0 to 150K lbf				х	
PC-1	Chamber Pressure	0 to 2000 psia	x	А, В	x		225
PC-2	Chamber Pressure	0 to 2000 psia		C, D		х	
PP-1	Pyrogen Pressure	0 to 2500 psia	x	Α, Β			225
PP-2	Pyrogen Pressure	0 to 2500 psia		C, D	x		
PA-3	Cell Pressure	0 to 0.5 psia		C, D			225
PA-4	Cell Pressure	0 to 0.5 psia	x	А, В	x		
PA-5	Cell Pressure	0 to 15 psia		А, В			225
T-1	Nozzle Temperature	0 to 1000°F	х	в			45
T-2	Case Temperature	0 to 1000°F		В			45
T-3	Case Temperature	0 to 1000°F		В			45
T-4	Forward Dome Temperature	0 to 1000°F		В			45

TABLE III (Concluded)

Parameter Symbol	Parameter	Range	Strip Chart	Oscillo- graph ¹	High Accuracy Analog System	FM	Digital Data System, Samples per Second
T-5	Case	0 to 1000°F		в			45
T -6	Temperature Nozzle Temperature	0 to 1000°F		С			45
T-7	Case	0 to 1000°F		С			45
T-8	Case Temperature	0 to 1000°F		С			45
T-9	Case	0 to 1000°F		С			45
T-10	Forward Dome Temperature	0 to 1000°F		С			45
T-11	Nozzle Temperature	0 to 1000°F		С			45
T-12	Nozzle Temperature	0 to 1000°F		С			45
T-13	Nozzle Temperature	0 to 1000°F		D			45
T-14	Nozzle Temperature	0 to 1000°F		D			45
E-1, 2	EBW Charge Monitor	10 v		A, B, C, D			
I-1, 2	Ignition Current			A, B, C, D			45
V-1, 2	Ignition Voltage			A, B, C, D			45

1Oscillographs A and D were operated at 80 in./sec during the firing. Oscillographs B and C were operated at 16 in./sec during the firing.

TABLE IV SUMMARY OF MOTOR PERFORMANCE DATA (SATURN SIC RETRO MOTOR TEST)

Motor Number	SD-19	SD-20
AEDC Test Number	RP1435-01	RP1435-02
Test Date	2/18/65	2/24/65
Motor Environment during the 12 hours	50 - 70	100 S
Prior to Cell Pump Down, °F	68 to 71	66 to 69
Ignition Altitude, ft	114,000	113,000
Average Altitude, ft	113,000	113,000
Propellant Mass. lbm*	280.25	281.5
Pre-Fire Throat Area, in. 2*	35.10	35.08
Post-Fire Throat Area, in. ²	35.10	35.06
Pre-Fire Exit Area, in. ²	306.35	306.26
Post-Fire Exit Area, in. ²	307.16	306.85
Motor Weight, 1b*	521.25	527.00
Mass Ratio*	0.54	0.53
Ignition Delay, msec	60	58
Ignition Time, msec	93	92
Effective Burn Time, msec	610	626
Total Burn Time, sec	1.5	1.5
Maximum Chamber Pressure, psia	1765	1700
Total Chamber Pressure Integral, psia-sec	1171	1171
Effective Chamber Pressure Integral, psia-sec	1047	1051
Average Effective Chamber Pressure, psia	1716	1679
Total Impulse, lbr-sec		
Measured	66,0901	66,0001
Vacuum	66, 140	66,050
Percent Vacuum Correction	0.076	0.076
Effective Impulse, lbf-sec		
Measured	59,2102	59,5101
Vacuum	59,230	59,530
Percent Vacuum Correction	0.034	0.033
Average Effective Thrust, 1bf		
Measured	97.060	95,060
Vacuum	97,100	95,100
Specific Impulse, sec	236.0	234.6
Thrust Coefficient, vacuum	1.61	1.62

*Motor manufacturer's data

 $^{1}\ensuremath{\mathrm{Five}}$ data recording system readings were averaged to obtain this value.

²Three data recording system readings were averaged to obtain this value. Digital systems not used because of response characteristics.

UNCLAS	SIFIED
--------	--------

Security Classification								
DOCUMENT CO	NTROL DATA - R&	D						
(Security classification of title, body of abstract and indexi	ng annotation must be en	lered when t	the overall report is classified)					
Arnold Engineering Development Co	enter	UNCLASSIFIED						
ARO, Inc., Operating Contractor		26 GROUP						
Arnold Air Force Station, Tenness	see	N/A						
3. REPORT TITLE								
A SIMULATED ALTITUDE TEST OF A SATURN S1C RETRO DEVELOPMENT MOTOR (Test Unit No. SD-20)								
		a at let rear						
N/A								
5. AUTHOR(S) (Last name, first name, initial)								
Culp, J. S. and Bishop, B. M., A	RO, Inc.							
6. REPORT DATE	74. TOTAL NO. OF P	AGES	7 b. NO. OF REFS					
May 1965	45		5					
Ba. CONTRACT OR GRANT NO.	98. ORIGINATOR'S R	EPORT NUM	BER(S)					
AF40(600)-1000	AEDC-TR-6	5-85						
b Program Area 921E								
с.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)							
d.	N/A							
Qualified requesters may obtain	copies of th	is rep	ort from DDC.					
DDC release to CFSTI and foreign	announcemen	t and o	distribution					
not authorized.								
11. SUPPL EMENTARY NOTES	12. SPONSORING MIL	TARY ACTI	IVITY					
N/A	National Ae	ronaut	ics and Space					
	Administrat	10n	New Onloand Lo					
	Michoud Ope.	ration	s, New Orleans, La.					
Saturn SIC notro motor TE M_424	Test Unit N	umbor	SD_20 was fired					
saturn Sic retro motor IE-M-424,	Corporation	rosoar	ch and development					
program for this motor Primary	test object	ives w	ere to determine					
ignition characteristics, ballis	tic performa	nce. a	nd hardware integ-					
rity at altitude conditions. Th	e motor was	ignite	d by the two igni-					
tion systems at a simulated alti	tude of 113,	000 ft	and burned at an					
average altitude of 113,000 ft f	or a total o	f 1.5	sec. The effective					
burn time was 0.626 sec, and the	motor produ	ced an	effective vacuum					
impulse of 59,530 lbf-sec, which	is above th	e spec	ification minimum.					
The ignition time of 92 msec is	within the s	pecifi	cation require-					
ments. Post-fire motor inspecti	on revealed	that t	ne nardware integ-					
TTUY WAS SALISTACIOLY.								

MAR LOOTST

Security Classification							
14. KEY WORDS		LIN	K A	LIN	КВ	LIN	кс
Saturn SIC Rocket Engine Altitude Testing Retrograde Engine						1.022	
 INSTRU ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of De- fense activity or other organization (corporate author) issuing the report. REPORT SECURTY CLASSIFICATION: Enter the over- all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accord- ance with appropriate security regulations. GROUP: Automatic downgrading is specified in DoD Di- rective 5200, 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as author- ized. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classifica- tion, show title classification in all capitals in parenthesis imm.ediately following the title. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. 	JCTIONS imposed b such as: (1) ' (2) ' (3) ' (4) ' (4) ' (5) ' If the Services, cate this 11, SUP	"Qualified eport from "Foreign a report by D "U. S. Gov this report users shall "U. S. mili report direc shall reque "All distri ified DDC report has Departme fact and e PLEMENT	classifi requeste DDC," innouncer)DC is no remment directly i request itary age: ctly from est throug ibution of users sh s been fu nt of Con enter the CARY NO	cation, us rs may ob ment and ot authoriz agencies from DDC through ncies may DDC. Of gh f this repc all reques urnished to nmerce, fc price, if } DTES: Us	ing stand itain copi dissemina red." may obta . Other of obtain c ther quali ort is con- st through the Offi or sale to cnown. e for add	iard state ies of this ation of th in copies qualified opies of t fied user trolled. () ce of Tec the publi itional ex	ments s of DDC '' this s '' Qual- .,'' chnical ic, indi- plana-
If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. 6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.	12. SPOI the depar ing for) th 13. ABS' summary	NSORING I tmental pro he researc TRACT: 1 of the doc	MILITAR oject offi h and de Enter an ument inc	Y ACTIV ice or labe velopment abstract g dicative o	ITY: En pratory sp . Include giving a t of the repo	ter the na ponsoring e address prief and f ort, even	ime of (pay- factual though

should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those it nay also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

UNCLASSIFIED

Security Classification